

A detailed study of carbon chemical erosion in L-mode plasmas in the DIII-D divertor

D. G. Whyte, University of Madison - Wisconsin

J.N. Brooks, *Argonne National Laboratory*P.C. Stangeby, *University of Toronto*N.H. Brooks, *General Atomics*

Plasma-Facing Components Meeting
May 3, 2004
University of Illinois

Outline

- L-mode plasmas for carbon erosion studies
- Erosion modeling and interpretation
- Erosion with attached divertor plasma
 - > Divertor tile vs. main-wall tile
 - ➤ Determination of Y_{chem} at outer strikepoint
 - > Atomic carbon velocity distribution
- Effect of plasma detachment on carbon erosion.
- Discussion & Summary

H-mode plasma studies showed unexpected reduction in carbon erosion in the DIII-D divertor

- Encouraging results on the use of carbon:
 - ➤ In-situ Y_{chem} reduction at lower divertor.
 - Detachment, necessary for heat flux control, greatly reduces HC signals
- ...but *tentative* results:
 - Inconsistent plasma conditions over long-term study
 - ELMs in H-mode complicate interpretation of erosion and spectroscopy.

L-mode, simple-as-possible plasmas ideal for carbon studies

- Low power leads to \sim constant $T_{surf} \sim 375 \text{ K}$
- No ELMs
- Density control leads to good detachment control
- Multiple discharges
 - ➤ Improved DTS statistics
 - Redundant divertor diagnosis
 - Multiple C & HC emissions measured.

High resolution spectroscopy and divertor sweeping diagnose erosion over wide variety of surfaces

- Absolute wavelength calibration from discharge lamps during plasma shot (+/- 0.001 nm ~ 300 m/s).
- Can resolve $T_C < 0.5$ eV.

- Divertor tiles made from ATJ graphite, an isostatically molded fine grain graphite
- Multiple (>50) boronization layers applied over +10 year lifetime.

WBC Monte-Carlo code is used to interpret HC spectroscopy

- Full dissociation chains of methane & higher order HC's
- MOLDYN reflections vs. E
- Full HC spectrum launched into OSP plasma (DTS) with sonic flow to plate.
- Particle followed until redeposition or leave simulation zone (~5-10 cm)
- Added C₂ and C₃ rates for C₂ spectroscopic interpretation.
 - Close to C for ionization & diss. CX negligible in H plasma
- Excitation rates of CD, C_2 , C I and CII vs. T_{e,n_e} to calculate expected emission --> photon efficiency.

43.5% CD₄, 3.7% C₂D₂, 24.8% C₂D₄, 11% C₂D₆, 16% C₃D₆

CI photon efficiency

$$\left(\frac{XB}{S}\right)_{CI.910nm} = \sum_{i} n_e X_{CI.910nm} (T_e) \Delta t_{i,CI}$$

Atomic carbon velocity distribution can be an indicator of erosion source

- WBC computes emission weighted f(v_z) arising from HC dissociation into C I.
- Thompson model with lightion energy cutoff/correction predicts direct CI f(v_z) from D+ on C physical sputtering.

$$\frac{df_{\nu}(E)}{d\nu} \propto \left(\frac{E^{3/2}}{(E+E_B)^3}\right) \left(1 - \left(\frac{E_B+E}{\gamma(1-\gamma)E}\right)^{1/2}\right)$$

$$\gamma = \frac{4m_C m_D}{\left(m_C + m_D\right)^2} \sim 0.49$$

The main/inner wall tiles has 5-6 times higher Y_{chem} than the inner divertor tiles

- V1 is a rare location for ISP, small particle/energy fluence.
- Spectroscopy verifies
 ~identical ISP plasmas at two locations:

$$T_e \sim 10 \text{ eV}$$

 $n_e \sim 1.5 \times 10^{19} \text{ m}^{-3}$

 Boron (BD) higher from inner wall.

Attached outer strikepoint is dominated by physical sputtering, Y_{chem} = 0.3%

- Incident plasma: $T_e=20 \text{ eV}$, $E_i \sim 5 \text{ T}=100 \text{ eV}$, $n_e \sim 2.5 \times 10^{19} \text{ m}^{-3}$
- Matches of CD/C₂ ratio gives confidence in HC modeling.
- Match of CII/CI ratio gives confidence in ion transport modeling.

Neither erosion model fits the CI spectral features.

- Calculated f(v_z) convoluted with spectrometer instrumental function for comparison to measured CI spectra.
- Discrepancy with sputtering models unresolved.
 - \triangleright Physical: $T_{eff} \sim 1$ eV OK, shift too large
 - ightharpoonup Chemical WBC: shift OK, but T_{eff} ~3 eV too large.
- N.B. chemical erosion can actually lead to higher $T_{\rm eff,CI}$ than physical sputtering

WBC modeling predicts increasing photon efficiency in detached plasmas

CASE	WBC-20	WBC-21	WBC-22
Plasma parameters at outer strikepoint			
Te (eV)	20	5	1
$n_e (m^{-3})$	2.5e19	1.05e20	5.6e20
Photon-emission excitation rate coefficients (m ³ /s)			
C I (910 nm)	1.7e-15	1.5e-17	5.e-19
CD (431 nm)	5.6e-15	7e-15	1.5e-15
C_2 (516 nm)	2e-14	4e-14	1.16e-14
C^{+} (514 nm)	5e-16	nil	nil
Photon efficiencies: Full hydrocarbon spectrum launched			
CI	4.4e-03	1.6e-3	1.7e-3
CD	5.1e-2	0.45	0.22
C_2	1.1e-2	0.83	9.8
CII	4.2e-3		

- C₂ is particularly interesting case:
 - in 1 eV plasma no e- impact ionization /dissociation but readily excited by e- impact $(E_{th}\sim 2.4 \text{ eV})$.
- In qualitative agreement with C_2D_4 injection on JET at high density... C_2 most easily excited (Stamp et al.)

PFC meeting, May 2004, Whyte

Detachment strongly suppresses signatures of chemical erosion at the OSP

 HC brightness decreases to or below detection limits (open symbols) in detachment.

Detachment strongly suppresses signatures of chemical erosion at the OSP

• HC brightness decreases to or below detection limits (open symbols) in detachment.

• BD behavior significant:

- Must radiate in detached plasma(MFP ~1 mm)
- \triangleright Verifies $T_e \sim 1$ eV to sustain BD emission.
- ➤ Ultra-low T_e cannot be cause of extinction of HC emission, since $E_{th} \sim$ identical between BD & CD.

PFC meeting, May 2004, Whyte

Detachment strongly suppresses signatures of chemical erosion at the OSP: $Y_{chem} \le 10^{-4}$

ISP behaves nearly identical to **OSP**:

No apparent difference between locations in Y_{chem}

- Implies Y $_{chem}$ ~0.3% in attached case.
 - ➤ No DTS for modeling.
- No difference between net erosion dominated OSP (stars) and sooty, redeposited ISP tiles.

ISP behaves nearly identical to **OSP**:

No apparent difference between locations in Y_{chem}

- Implies Y_{chem} ~0.3% in attached case.
 - ➤ No DTS for modeling.
- No difference between net erosion dominated OSP (stars) and sooty, redeposited ISP tiles.

FURTHER OBSERVATIONS

- BD presence: T_e can support HC emission.
- Lack of HC emission --> little chemical erosion in detached ISP.
- In stark contrast to the divertor, main-wall chemical erosion increases with ~ constant yield.

Divertor atomic carbon response to detachment varies greatly from HC

- CI brightness is ~
 proportional to ion flux.
- Change in Zeeman splitting indicates CI emitted from ionization front.

Divertor atomic carbon response to detachment varies greatly from HC

- CI brightness is ~
 proportional to ion flux.
- Change in Zeeman splitting indicates CI emitted from ionization front.
- Little or no change in T_{eff}, contradictory to chemical erosion.
- Doppler shift remains inconsistent with physical sputtering.

Discussion on dependence of location for

$\mathbf{Y}_{\mathsf{chem}}$

- Redeposited layers, e.g inner divertor do **not** have higher chemical erosion.
 - ➤ No difference between ISP & OSP, regions yet dominated by net erosion &deposition respectively.
 - ➤ At strikepoints, almost all C atoms/HC eroded are from a deposited film, since prompt redeposition on ~90%.
- Results indicate **against** importance of boron in reduction.
 - ➤ Slighter higher Y_{chem} after boronization
 - ➤ Upper inner wall and main-wall, strong boron presence with no apparent reduction
- Large energy / particle fluence in divertor remains as the "cause" in the relative reduction.

Discussion on the (near) extinction of HC emission in detachment.

- Accuracy of yield < 10⁻⁴ unknown, but the general results of WBC follow from simple examination
 - The HC dissociation chain is simplified by the lack of ionizing event, \rightarrow the HC should produce C_2 &/or CD
 - \triangleright BD shows C_2 and CD should radiate efficiently.
- The absence of C_2 &/or CD argues strongly **against**:
 - **1.** The importance of chemical erosion as a carbon source for the plasma (*does not produce C ions*) and
 - **2.** A large role for chemical erosion in determining net erosion / deposition (*MFP of HC molecules < mm << MFP CI, CII*).

In summary we have verified and further quantified previous H-mode results of carbon erosion, with some new obervations

- Chemical erosion is weak in the DIII-D lower divertor, $Y_{chem} \sim 0.3 \%$ with attached plasma.
- Same shot comparison indicates that the divertor tiles have less chemical erosion than main, inner wall.
 - ➤ Boron does not appear to be cause of reduction.
- Detachment eliminates the spectroscopic signature of chemical erosion, with a inferred yield through modeling < 10⁻⁴.